Corgi Dog Bark

ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Kaggle_Titanic
    머신러닝(MACHINE LEARNING) 2021. 4. 9. 00:44
    반응형
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    test_df = pd.read_csv("./test.csv")
    train_df = pd.read_csv("./train.csv")
    train_df.head()

    PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
    0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
    1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
    2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
    3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
    4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
    train_df.set_index('PassengerId', inplace=True)
    test_df.set_index('PassengerId', inplace=True)
    train_index = train_df.index
    test_index = test_df.index
    train_index
    Int64Index([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,
                ...
                882, 883, 884, 885, 886, 887, 888, 889, 890, 891],
               dtype='int64', name='PassengerId', length=891)
    y_train_df = train_df.pop("Survived")

    Data _ Processing 작업

    pd.set_option('display.float_format', lambda x: '%.2f'%x)
    test_df.isnull().sum()
    Pclass        0
    Name          0
    Sex           0
    Age          86
    SibSp         0
    Parch         0
    Ticket        0
    Fare          1
    Cabin       327
    Embarked      0
    dtype: int64
    train_df.isnull().sum()
    Pclass        0
    Name          0
    Sex           0
    Age         177
    SibSp         0
    Parch         0
    Ticket        0
    Fare          0
    Cabin       687
    Embarked      2
    dtype: int64

    decision 1 : Drop Cabin

    del train_df["Cabin"]
    del test_df["Cabin"]
    all_df = train_df.append(test_df)
    all_df

    Pclass Name Sex Age SibSp Parch Ticket Fare Embarked
    PassengerId
    1 3 Braund, Mr. Owen Harris male 22.00 1 0 A/5 21171 7.25 S
    2 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.00 1 0 PC 17599 71.28 C
    3 3 Heikkinen, Miss. Laina female 26.00 0 0 STON/O2. 3101282 7.92 S
    4 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.00 1 0 113803 53.10 S
    5 3 Allen, Mr. William Henry male 35.00 0 0 373450 8.05 S
    ... ... ... ... ... ... ... ... ... ...
    1305 3 Spector, Mr. Woolf male nan 0 0 A.5. 3236 8.05 S
    1306 1 Oliva y Ocana, Dona. Fermina female 39.00 0 0 PC 17758 108.90 C
    1307 3 Saether, Mr. Simon Sivertsen male 38.50 0 0 SOTON/O.Q. 3101262 7.25 S
    1308 3 Ware, Mr. Frederick male nan 0 0 359309 8.05 S
    1309 3 Peter, Master. Michael J male nan 1 1 2668 22.36 C

    1309 rows × 9 columns

    del all_df['Name']
    del all_df["Ticket"]
    all_df.head()

    Pclass Sex Age SibSp Parch Fare Embarked
    PassengerId
    1 3 male 22.00 1 0 7.25 S
    2 1 female 38.00 1 0 71.28 C
    3 3 female 26.00 0 0 7.92 S
    4 1 female 35.00 1 0 53.10 S
    5 3 male 35.00 0 0 8.05 S
    all_df["Sex"] = all_df["Sex"].replace({"male" : 0 , "female" : 1})
    all_df["Embarked"] = all_df["Embarked"].replace({"S":0,"C":1,"Q":2, np.nan:99})
    all_df.head()

    Pclass Sex Age SibSp Parch Fare Embarked
    PassengerId
    1 3 0 22.00 1 0 7.25 0
    2 1 1 38.00 1 0 71.28 1
    3 3 1 26.00 0 0 7.92 0
    4 1 1 35.00 1 0 53.10 0
    5 3 0 35.00 0 0 8.05 0
    pd.get_dummies(all_df["Embarked"], prefix = "embarked")

    embarked_0 embarked_1 embarked_2 embarked_99
    PassengerId
    1 1 0 0 0
    2 0 1 0 0
    3 1 0 0 0
    4 1 0 0 0
    5 1 0 0 0
    ... ... ... ... ...
    1305 1 0 0 0
    1306 0 1 0 0
    1307 1 0 0 0
    1308 1 0 0 0
    1309 0 1 0 0

    1309 rows × 4 columns

    matrix_df = pd.merge(
        all_df,pd.get_dummies(all_df["Embarked"], prefix = "embarked"),
        left_index= True, right_index = True)
    matrix_df.head()

    Pclass Sex Age SibSp Parch Fare Embarked embarked_0 embarked_1 embarked_2 embarked_99
    PassengerId
    1 3 0 22.00 1 0 7.25 0 1 0 0 0
    2 1 1 38.00 1 0 71.28 1 0 1 0 0
    3 3 1 26.00 0 0 7.92 0 1 0 0 0
    4 1 1 35.00 1 0 53.10 0 1 0 0 0
    5 3 0 35.00 0 0 8.05 0 1 0 0 0
    matrix_df.corr()

    Pclass Sex Age SibSp Parch Fare Embarked embarked_0 embarked_1 embarked_2 embarked_99
    Pclass 1.00 -0.12 -0.41 0.06 0.02 -0.56 -0.05 0.10 -0.27 0.23 -0.06
    Sex -0.12 1.00 -0.06 0.11 0.21 0.19 0.07 -0.12 0.07 0.09 0.05
    Age -0.41 -0.06 1.00 -0.24 -0.15 0.18 0.07 -0.08 0.09 -0.02 0.06
    SibSp 0.06 0.11 -0.24 1.00 0.37 0.16 -0.03 0.08 -0.05 -0.05 -0.02
    Parch 0.02 0.21 -0.15 0.37 1.00 0.22 -0.03 0.07 -0.01 -0.10 -0.02
    Fare -0.56 0.19 0.18 0.16 0.22 1.00 0.05 -0.17 0.29 -0.13 0.04
    Embarked -0.05 0.07 0.07 -0.03 -0.03 0.05 1.00 -0.21 0.06 0.12 0.99
    embarked_0 0.10 -0.12 -0.08 0.08 0.07 -0.17 -0.21 1.00 -0.78 -0.49 -0.06
    embarked_1 -0.27 0.07 0.09 -0.05 -0.01 0.29 0.06 -0.78 1.00 -0.16 -0.02
    embarked_2 0.23 0.09 -0.02 -0.05 -0.10 -0.13 0.12 -0.49 -0.16 1.00 -0.01
    embarked_99 -0.06 0.05 0.06 -0.02 -0.02 0.04 0.99 -0.06 -0.02 -0.01 1.00
    all_df.groupby("Pclass")["Age"].mean()
    Pclass
    1   39.16
    2   29.51
    3   24.82
    Name: Age, dtype: float64
    all_df.loc[(all_df["Pclass"] ==1 ) & (all_df["Age"].isnull()) , 'Age']
    PassengerId
    32     nan
    56     nan
    65     nan
    167    nan
    169    nan
    186    nan
    257    nan
    271    nan
    285    nan
    296    nan
    299    nan
    307    nan
    335    nan
    352    nan
    376    nan
    458    nan
    476    nan
    508    nan
    528    nan
    558    nan
    603    nan
    634    nan
    670    nan
    712    nan
    741    nan
    767    nan
    794    nan
    816    nan
    840    nan
    850    nan
    914    nan
    933    nan
    1038   nan
    1040   nan
    1060   nan
    1083   nan
    1097   nan
    1158   nan
    1182   nan
    Name: Age, dtype: float64
    all_df.loc[(all_df["Pclass"] == 1) & (
        all_df["Age"].isnull()), "Age"] = 39.16
    all_df.loc[(all_df["Pclass"] == 2) & (all_df["Age"].isnull()) , "Age"] = 29.51
    all_df.loc[(all_df["Pclass"] == 3) & (all_df["Age"].isnull()) , "Age"] = 24.82
    all_df.isnull().sum()
    Pclass      0
    Sex         0
    Age         0
    SibSp       0
    Parch       0
    Fare        1
    Embarked    0
    dtype: int64
    all_df.groupby("Pclass")["Fare"].mean()
    Pclass
    1   87.51
    2   21.18
    3   13.30
    Name: Fare, dtype: float64
    all_df[all_df["Fare"].isnull()]

    Pclass Sex Age SibSp Parch Fare Embarked
    PassengerId
    1044 3 0 60.50 0 0 nan 0
    all_df.loc[all_df["Fare"].isnull(), "Fare"] = 13.30
    del all_df["Embarked"]
    all_df["Pclass"] = all_df["Pclass"].replace({1:"A",2:"B",3:"C"})
    all_df = pd.get_dummies(all_df)
    all_df.head()

    Sex Age SibSp Parch Fare Pclass_A Pclass_B Pclass_C
    PassengerId
    1 0 22.00 1 0 7.25 0 0 1
    2 1 38.00 1 0 71.28 1 0 0
    3 1 26.00 0 0 7.92 0 0 1
    4 1 35.00 1 0 53.10 1 0 0
    5 0 35.00 0 0 8.05 0 0 1
    all_df = pd.merge(
        all_df, matrix_df[["embarked_0", "embarked_1" , "embarked_2","embarked_99" ]], left_index=True, right_index=True)
    train_df = all_df[all_df.index.isin(train_index)]
    test_df = all_df[all_df.index.isin(test_index)]
    train_df.head()

    Sex Age SibSp Parch Fare Pclass_A Pclass_B Pclass_C embarked_0 embarked_1 embarked_2 embarked_99
    PassengerId
    1 0 22.00 1 0 7.25 0 0 1 1 0 0 0
    2 1 38.00 1 0 71.28 1 0 0 0 1 0 0
    3 1 26.00 0 0 7.92 0 0 1 1 0 0 0
    4 1 35.00 1 0 53.10 1 0 0 1 0 0 0
    5 0 35.00 0 0 8.05 0 0 1 1 0 0 0

    Build Model

    x_data = train_df.values
    y_data = y_train_df.values
    y_data
    array([0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
           1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
           1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1,
           1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
           1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,
           0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
           1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
           1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
           0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
           0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
           1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,
           0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1,
           1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
           0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
           0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
           0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1,
           0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0,
           1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
           0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
           1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
           1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
           0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1,
           1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
           1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,
           0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
           0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,
           0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0,
           1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
           0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
           0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
           0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1,
           1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,
           1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], dtype=int64)
    from sklearn.linear_model import LogisticRegression
    cls = LogisticRegression()
    cls.fit(x_data,y_data)
    C:\Users\sangi\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:762: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
    
    
    
    
    
    LogisticRegression()
    cls.intercept_
    array([0.1770517])
    cls.coef_
    array([[ 2.60380921e+00, -4.11086178e-02, -3.25554029e-01,
            -8.54824009e-02,  2.34901265e-03,  1.11040984e+00,
             1.42993750e-01, -1.09047200e+00, -2.08728159e-01,
             2.07424688e-01,  9.74431422e-02,  6.67919187e-02]])
    cls.predict(test_df.values)
    array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
           1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
           1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
           1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
           1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
           0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
           1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
           1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
           0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
           1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
           0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
           0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
           0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
           0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
           1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,
           0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
           1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
           0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0],
          dtype=int64)
    x_test=test_df.values
    y_test = cls.predict(x_test)
    y_test
    array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
           1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
           1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
           1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
           1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
           0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
           1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
           1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
           0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
           1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
           0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
           0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
           0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
           0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
           1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,
           0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
           1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
           0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0],
          dtype=int64)
    result = np.concatenate((test_index.values.reshape(-1,1), cls.predict(x_test).reshape(-1,1)), axis =1 )
    result[:5]
    array([[892,   0],
           [893,   0],
           [894,   0],
           [895,   0],
           [896,   1]], dtype=int64)
    df_submission = pd.DataFrame(result, columns = ["PassengerId", "Survived"])
    df_submission.to_csv("submission_result.csv", index=False)
    반응형

    댓글

Designed by Tistory.